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ABSTRACT
There have been a fairly of research interests in exploring the
disentanglement of appearance and shape from human images.
Most existing endeavours pursuit this goal by either using training
images with annotations or regulating the training process with
external clues such as human skeleton, body segmentation or cloth
patches etc. In this paper, we aim to address this challenge in a more
unsupervised manner—we do not require any annotation nor any
external task-specific clues. To this end, we formulate an encoder-
decoder-like network to extract both the shape and appearance
features from input images at the same time, and train the param-
eters by three losses: feature adversarial loss, color consistency
loss and reconstruction loss. The feature adversarial loss mainly
impose little to none mutual information between the extracted
shape and appearance features, while the color consistency loss is
to encourage the invariance of person appearance conditioned on
different shapes. More importantly, our unsupervised1 framework
utilizes learned shape features as masks which are applied to the
input itself in order to obtain clean appearance features. Without
using fixed input human skeleton, our network better preserves the
conditional human posture while requiring less supervision. Exper-
imental results on DeepFashion and Market1501 demonstrate that
the proposed method achieves clean disentanglement and is able to
synthesis novel images of comparable quality with state-of-the-art
weakly-supervised or even supervised methods.

1Unsupervised learning has many interpretations in different tasks. To be clear, in
this paper, we refer unsupervised learning as learning without task-specific human
annotations, pairs or any form of weak supervision.
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1 INTRODUCTION
How to automatically, without any supervision, learn and decom-
pose the characteristics of an object in the world is an ultimate goal
in computer vision. Conversely, learning to synthesize components
from different objects and generate novel images is also very chal-
lenging. This problem has attracted an extraordinary amount of
interests recently due to rapid progress in deep generative mod-
els [16, 26, 38].

While a variety of generative frameworks have been proposed,
the generative adversarial network (GAN) [16] and its variants [1,
17, 42] have arguably become most prevalent due to high-quality
images they can produce. Through different learning strategies on
suchmodels [22, 32, 36, 54], the well-trained latent representation of
images are able to synthesize novel images with desirable properties
according to the external inputs on latent space. Unfortunately,
these methods need laborious labeling, pairing or other supervision
signals to enforce the network to memorize the mapping. More
importantly, their performance are far from satisfactory in this
task. At the same time, unsupervised disentangling methods [7, 19]
currently are only able to be applied in very naive datasets. It is
impractical to apply unsupervised learning do disentangle all the
characteristics.

In this paper, in order to generate realistic and novel human
images unsupervisedly, we narrow down components to the most
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Figure 1: Left: The problem setup of existing methods.
The challenge is to learn disentangled appearance features
given an image and its corresponding shape representation.
We call this weakly-supervised disentanglement. Right: The
problem setup of our approach. The challenge is to learn dis-
entangled appearance and shape representations given only
an image, without any task-specific cues. We call this unsu-
pervised disentanglement. The output in this figure is a novel
image generated by our framework.

prominent two properties of human: appearance and shape. Learn-
ing a latent representation that properly disentangles those two
factors from images, however, still remains a challenging task. Previ-
ous attempts [32] [10, 13, 18, 22, 44, 49, 50] to this task have always
resorted to paired data (e.g. two images with the same appearance
but different poses) in order to obtain ground-truth supervision on
what generated images should look like. While in limited scenarios
where the paired information is easy to acquire [49], obtaining
paired data is often expensive, time-consuming and may require
extra complex operations [5].

Although a few attempts [11, 33, 41, 43] have managed to address
this problem using only unpaired data by leveraging the recent
success of unpaired image to image translation algorithms [3, 8,
24, 27–29, 40, 46, 52, 56], they always require explicit attribute-
specific cue as additional inputs, such as human skeleton [11, 41],
joint heatmaps [33], body segmentation [37, 43], cloth patches [18,
50] or a combination of several cues [10], in order to individually
control the two properties of the generated images and looking
realistic at the same time. While these explicit attribute-specific
cues can provide valuable supervision information, they are fixed
and manually defined, thus exposing two limitations:

(1) Complex pre-processing and heavy engineering tricks are
often employed in order to utilize the attribute-specific cues.
Examples include: convert joint coordinates to heatmaps
using 2D Gaussian noise [49]; patching white circles of spe-
cific radius around each joints locations [32, 33]; carefully
drawing stickman [11, 41]; and manually crop or warp ap-
pearances patches around every body parts [11, 33]. Not only
do those pre-processing severely limit the flexibility of their

methods, they also impose strong prior feature representa-
tions rather than learning from data. In other words, using
explicit attribute-specific cues limits the network’s ability of
leaning plausible disentangled representations in shape and
appearance space.

(2) The predefined attribute-specific cues inevitably carry un-
desired bias into the system, which will hinder the quality
of the generated images. For example, artificially defined
human poses such as skeleton or joint coordinates cannot
comprehensively describe the shape of a person. Such shape
information lack important details about e.g. thickness of
limbs, hair styles etc, resulting in stiff and unnatural look-
ing generated persons [11]. Another example is that body
segmentation obtained with human parsing [14, 15] often
focus on types of apparels rather than the underlying human
structure, restricting the use case to only a few specific types
of apparel [37]. Therefore, usage of the attribute-specific
cues absent of further refinements may result in ill-suited
representations for image translation task.

We argue that a more general learning strategy is to extract
more plausible data-driven disentangled representations for ap-
pearance and shape respectively through unsupervised learning.
Figure 1 illustrates our problem setup and motivation. We aim to
automatically infer better appearance and shape features from two
randomly chosen images, and generate novel image accordingly.
To this end, we propose an end-to-end unsupervised network inte-
grating prior knowledge of human pose detection, to automatically
extract disentangled representations and generate novel images.
The human pose prior is adaptively refined with our training ob-
jectives, producing a more comprehensive shape descriptor. We
argue that the learned shape and appearance descriptors, compared
to explicit attribute cues, produce cleaner feature representations
and are better suited for the task of human shape and appearance
transfer. Also, not requiring any extra information input makes our
network more flexible and widely applicable.

Specifically, our proposed method explores cycle consistency
and adversarial training to simultaneously encourage independence
and high expressive power of the learned features. The network
consists of three components: A shape encoder that generates a
set of masks corresponds to different body parts; An appearance
encoder that capture appearance characteristics based on the shape
masks; And finally a image decoder that takes the concatenated
input of appearance features and shape masks to generate realistic
images with desired attributes.

We demonstrate the capability of our proposed method on two
different datasets: DeepFashion [31] and Market1501 [55]. We ob-
tain convincing results on both datasets, with favorable compar-
isons to the state-of-the-art approaches. Our main contributions
are summarized as follows:

• We propose an end-to-end network to learn disentangled
representations of appearance and shape in an unsupervised
manner.

• Our unsupervised framework for conditional appearance
and shape transfer eliminate the need for explicit attribute
cues inputs.

• Our extensive experiments demonstrate that our unsuper-
vised framework outperform state-of-the-arts algorithms



quantitatively and visually, including some supervised and
weakly-supervised methods.

2 RELATEDWORK
Promising results have been accomplished under supervised setting
when input-output images are paired exactly. The most success-
ful supervised method is the Pix2pix framework [22, 51], which
applies a conditional discriminator [36] on image patches to gen-
erate high quality images. However, the problem becomes more
challenging with no available paired data. A major limitation in
previous unpaired image translation and representation learning
methods [3, 8, 12, 24, 27–29, 40, 46, 52, 56] is that they can not
manipulate attributes independently to generate novel images, se-
verely restricting their use case to image with the same spatial
structures. When spatial structures differs dramatically between
inputs and outputs, as is the case in human image translation, they
often produce unpleasant results cluttered with visual artifacts
(See Figure 4 and 5). As a consequence, we can not directly apply
similar methods on the task of conditional appearance and shape
transfer. Instead, we resort to learning disentangled representations
to manipulate image attributes and achieve realistic generation
results.

2.1 Unpaired Human Image Generation
A fair amount of works have been proposed to tackle unpaired
appearance and shape transfer [11, 33, 41, 43]. However, they all
rely on to some type of additional information such as joint coordi-
nates [11, 33, 41] or stand-alone cloth patches [18, 50]. We argue
they only managed to address the task in a weakly-supervised
manner. Mo [37] took a different approach by exploring domain-
specific information, and propose instance-aware transfer using
human parsing masks. However, their model can only be applied
on specific types of clothes and needs to be retrained for other
apparels, making it unpractical.

2.2 Disentangled Representation
Learning disentangled representation has been a pursuit of machine
learning researchers. With the recent developments of generative
models, many methods are able to discover factors of variation
other than those relevant for classification. Mathieu [35] utilizes a
set of labeled observations to discover other factors that are inde-
pendent to the label through cross-domain image translation and
reconstruction. [30, 39, 53] use images of different styles to learn a
disentangled factor that control the style. Taking advantage of the
temporal coherence and the rich pairwise information in videos,
[2, 9, 12, 47, 48] attempts to factor the video into temporal station-
ary and temporal varying components, or content and motion. The
above works all try to acquire other factors of variation with the
help of a given factor, such as the styles of the image or the poses
of the frames. It is more challenging to acquire disentangled rep-
resentations in an unsupervised manner. The method by [20, 21]
manages to automatically discover different factors by mixing and
unfolding latent representations. We absorb inspirations from [20]
but focus on mixing the appearance and pose features in our paper.

3 METHOD
As illustrated in Figure 1, our goal is to generate novel realistic im-
ages based on two input images that respectively supply the desired
appearance and shape conditions. We achieve this in an unsuper-
vised manner where neither the ground truths of the output nor
attribute-specific cues (e.g. human skeletons) are needed. The model
we learn is able to automatically disentangle shape from appear-
ance, and thus can generate images under arbitrary combination of
them.

Formally, let us denote by 𝑰𝑎, 𝑰𝑏 ∈ 𝑅𝐻×𝑊 ×3 the two RGB images
of the height𝐻 and width𝑊 . We suppose the shape and appearance
representations for image 𝑰𝑎 to be 𝒛𝑎𝑠 and 𝒛𝑎𝑎 , respectively, and
define the features 𝒛𝑏𝑠 and 𝒛𝑏𝑎 of 𝑰𝑏 similarly. Our task is thus to learn
an image decoder 𝐷𝐼 (𝒛𝑎𝑎, 𝒛𝑏𝑠 ) that combines the appearance from
𝑰𝑎 with the shape of 𝑰𝑏 to produce a novel image 𝑰𝑚𝑖𝑥 when 𝑎 ≠ 𝑏.
The core of our method is how to encourage the disentanglement
between the shape and appearance features, thus we can expect a
realistic looking mixed image if we retain either of them but freely
alter the other. As discussed before, we strive to address the problem
with no external supervision, hence how to train our model requires
specific network design, which is the topic of this section. We first
present details of the network, then define the objective functions
and explain our training strategy.

3.1 Architecture Design
The network consists of four modules: 1. a shape encoder 𝐸𝑠 that
generates a set of shape masks; 2. an appearance encoder 𝐸𝑎 that
encodes appearance contents attended by the shape masks from 𝐸𝑠 ;
3. an image decoder 𝐷𝐼 that generates photo-realistic images based
on the concatenation of the shape and appearance features; 4. a fea-
ture classifier that learns to classify whether the given appearance
and shape features are from the same image or not. The overview
of the network is shown in Figure 2. We defer more details of the
network structure into the supplementary material.

Shape and Appearance Encoders. The shape encoder 𝐸𝑠 is a con-
volutional network that down-samples the input image 𝑰𝑎 and emit
a set of𝑚 masks {𝒛𝑎

𝑠,𝑖
, 𝑖 = 1...𝑚}, where the value of each pixel

in 𝒛𝑎
𝑠,𝑖

is within [0, 1]. These masks serve dual purposes: one to
filter local regions of the input images and the other one to pro-
vide conditional shape input to the image decoder 𝐷𝐼 . Particularly
for the first purpose, each of the𝑚 masks is first resized spatially
and broadcasted along channels to match the size of the input
image, and then is applied to the input image by element-wise
multiplication, thus resulting in 𝑛 filtered images. All these filtered
images are passed through the appearance encoder 𝐸𝑎 (also a down-
sampling convolution network) to deliver 𝑛 appearance feature
vectors, namely, 𝒛𝑎𝑎 = {𝒛𝑎

𝑎,1, 𝒛
𝑎
𝑎,2 ...𝒛

𝑎
𝑎,𝑚}. It should be noted that,

the fusion of the shape and input images prior to the input of the
appearance encoder makes our method clearly distinct from those
conventional approaches [11, 41] where the encoding processes
of both attributes are independent to each other. We contend that,
the spatial-attended fusion is reasonable and efficient, as the shape
mask should be naturally combinative to the raw image content
and the filtered image could focus more on the meaningful regions
of the person.



Figure 2: The overview of the network.

Image Decoder. The shape and appearance representations 𝒛𝑠
and 𝒛𝑎 are concatenated as input to the image decoder 𝐷𝐼 for im-
age decoding. As is shown in Figure 2, we simultaneously decode
reconstruction image 𝑰

𝑎
= 𝐷𝐼 (𝒛𝑎𝑠 , 𝒛𝑎𝑎) and generate novel image

𝑰
𝑚𝑖𝑥

= 𝐷𝐼 (𝒛𝑏𝑠 , 𝒛𝑎𝑎) using their corresponding features. The recon-
structed 𝑰

𝑎 is associated with an reconstruction loss to satisfy the
cycle consistency, while the novel 𝑰𝑚𝑖𝑥 is used to compute the color
consistency loss. Details are explained in Section 3.2.

Feature Classifier. Another core assumption of our method is
that the distributions of the shape masks extracted from different
persons should be consistent and identical. This assumption is
crucial, as it enables the transferring ability of the pose from one
person to another. To do so, we propose a feature classifier 𝐶𝑓

which takes as input the concatenation of the shape and appearance
representations, and determines if they are from the same person.
For instance in Fig 2, we have the true pair [𝒛𝑎𝑠 , 𝒛𝑎𝑎] and the false one
[𝒛𝑏𝑠 , 𝒛𝑎𝑎]. The classifier will output 1 when 𝑎 = 𝑏 and 0 otherwise.
We then train the classifier and the encoder in an adversarial way
to make close the distributions of the shape masks 𝒛𝑎𝑠 and 𝒛𝑏𝑠 .

3.2 Model Training
Motivated by the discussions above, we apply three losses: the re-
construction loss that trains the network to generate photo-realistic
images; the feature adversarial loss that ensures universal repre-
sentative ability of the shape mask; and the color consistency loss
that encourages consistent appearance transfer. Below we describe
them in details.

Reconstruction Loss. Conventional pixel-wise reconstruction loss
such as L1-norm enforces exact alignments between two images.
This yet is too rigorous for our framework because certain minor
granularity is inevitably lost if we attempt to disentangle shape from
appearance. Therefore, we adopt the image perceptual loss [6, 23]
instead to constrain the reconstructed image to be perceptually the

same as the original. Formally, the reconstruction loss is:

L𝑅 =
∑
𝑘

𝜙𝑘 | |Φ𝑘 (𝑰𝑎) − Φ𝑘 (𝐷𝐼 (𝒛𝑎𝑠 , 𝒛𝑎𝑎)) | |1 (1)

where Φ is the VGG [45] network used to compute the perceptual
similarities measured at the 𝑘th layer, and 𝜙𝑘 controls its weight.

Feature Adversarial Loss. We impose this loss via an adversarial
training between the feature classifier𝐶𝑓 and the shape/appearance
encoders 𝐸𝑠 and 𝐸𝑎 . The feature classifier is trained to correctly
classify whether its inputs are from the same image or not, while the
encoders are trained to fool the classifier. We employ the LSGAN
framework [34] to update the networks because of its simplicity and
fast convergence. We leave the application of other GAN variants
such as WGANGP [17] in the future work. Specifically, we update
the feature classifier with

L𝑎𝑑𝑣 (𝐶𝑓 ) = (𝐶𝑓 (𝒛𝑎𝑠 , 𝒛𝑎𝑎) − 1)2 + (𝐶𝑓 (𝒛𝑎𝑠 , 𝒛𝑏𝑎))2 (2)

Conversely, we update encoders to output features that can ’fool’
the classifier:

L𝑎𝑑𝑣 (𝐸𝑠 , 𝐸𝑎) = (𝐶𝑓 (𝒛𝑎𝑠 , 𝒛𝑎𝑎) − 1)2 + (𝐶𝑓 (𝒛𝑎𝑠 , 𝒛𝑎𝑎))2 (3)

Color Consistency loss. We add this regularization term to our
framework to ensure the appearance statistics remain unchanged
when transferred to other shapes. In particular, we enforce color
consistency between the filtered patches2 of the generated image
and those of the original image. Let us define 𝑥𝑛 to be the 𝑛th pixel
in the 𝑖th image patch 𝑰 𝒛𝑠,𝑖 , we can then calculate the mean 𝜇 and
variance 𝜎 of that sample by 𝜇𝑖 =

∑
N 𝑥𝑛/𝑁 and 𝜎𝑖 =

∑
N (𝑥𝑛 −

𝜇𝑖 )2/𝑁 where N is the total number of pixels in the image.
We then impose color consistency by minimizing the squared

difference of the color statistics:

L𝐶 =
1
𝑚

𝑚∑
𝑖

((𝜇𝑚𝑖𝑥
𝑖 − 𝜇𝑎𝑖 )

2 + (𝜎𝑚𝑖𝑥
𝑖 − 𝜎𝑎𝑖 )

2) (4)

2In our case, we refer 𝑰 𝒛𝑠,𝑖 as the 𝑖-th image patch, as opposed to the conventional
definition of image patch’, which often refer to a cropped part.



where𝑚 is the number of shape masks.

Full Loss. Putting above losses altogether, we attain the full loss
as

L = 𝜆1L𝑅 + 𝜆2L𝑎𝑑𝑣 + 𝜆3L𝐶 (5)
where 𝜆1, 𝜆2 and 𝜆3 are hyper-parameters to control the weights of
the three components. We sample mini-batches of randomly chosen
image pairs (𝑰𝑎, 𝑰𝑏 ) to train our network.

4 EXPERIMENTS
In this section, we demonstrate the disentanglement ability of the
proposed method which enable us to individually control each com-
ponent of the generated image, namely the appearance and shape.
We first evaluate the results on conditional person image genera-
tion in Section 4.2. Then we explain and visualize the disentangled
representations learned by our network. After that, we present both
qualitative and quantitative comparisons with current state-of-the-
art algorithms, showing that we achieve favourable results against
other weakly or even fully-supervised methods. Finally, an ablation
study is conducted. Two datasets are applied: DeepFashion [31] and
Market1501 [55].

4.1 Datasets & Implementation Details
DeepFashion. We use the In-shop Clothes Retrieval Benchmark of
DeepFashion which contains 52712 of in-shop clothes images. The
dataset offers various kinds of clothes on many different persons.
Following the previous protocol [11], we filter out invalid images
with no person present, and then randomly select 32988 images for
training and 8245 images for testing.

Market1501. The Market1501 dataset contains 322,668 images
collected from 1501 persons. Each image is of spatial size 128x64.
Joining the prior practice [11], we randomly utilize 9399 images for
training and 3810 images for testing.

ImplementationDetails. The network is optimized usingAdam
optimizer [25] with initial learning rate of 0.0001, 𝛽1 = 0.9 and
𝛽2 = 0.999. The learning rate is decreased by 5% every 2500 itera-
tions, also, learning rate for the shape encoder 𝐸𝑠 is further modified
by a factor of 0.1. The batch size is set to 12 primarily due to hard-
ware limitations. We update the generator(𝐸𝑠 , 𝐸𝑎 and 𝐷𝐼 ) and the
classifier (𝐶𝑓 ) alternately on every step. The hyper-parameters in
Eq 5 are set to be:

𝜆1 = 0.01, 𝜆2 = 1, 𝜆3 = 1 (6)

We initialize the shape encoder network with pretrained weights
of OpenPose net [4] for stable training and fast convergence.

4.2 Appearance $ Shape Transfer
We show that the proposed network can independently control the
appearance and shape of an image based only on two conditional
images, each providing cues for one the attributes.

Figure 3 shows the image generation results on DeepFashion
and market1501, where a mixture of upper/whole body images
from side/front/back views are presented to show the robustness
of our method. We can see the generated image preserves the con-
ditional shape while being consistent with the appearance in color.
Even some detailed shape characteristics are successfully preserved
during the transfer process. For example, in the second block of

Deepfashion images, it can be observed that the hair style in the
generated image is as natural as in the original one. Also the details
around the corner of the cloth are well preserved.

To demonstrate the stability of our model, transfer results using
the same appearance image with multiple shape images (and the
reverse) are shown in Figure 6. It is obvious that both the shape and
appearance remain consistent and well-aligned with the conditional
image across different generation results, proving good stability of
the model.

4.3 Understanding The Disentangled
Representation

As explained above, we use pre-trained OpenPose net as our shape
prior, and adaptively refine the generated shape masks. The shape
masks not only guide the appearance encoder the encoder local
patterns, but also serve as shape conditions for the image decoder.
Figure 7 shows the details of shape mask refinement, as well as
illustrate the positive effect it gives to image generation.

We can see from Figure 7 (a) that shape masks changed dra-
matically after refinement. Although some background noise got
encoded into the refined masks, they conform around the input
shape much more tightly than the original ones, e.g. we can clearly
see that the bottom left mask focuses on the lower legs and shoes
while the original one only roughly indicates their location. Such
mask refinement offer noticeable improvements in the quality of
the generated images, as shown in the two reconstructed images on
the right side. Figure 7 (b) shows better visualization of the learned
shape representation. In our framework, the shape encoder 𝐸𝑠 gen-
erates a set of 14 masks, each focusing on a different body part. To
better visualize the combined effect of all the masks, we decode
images by setting the appearance features to all zeros, thus obtain
clean shape visualizations of shape representation, which is shown
in bottom row of (b). It is obvious that our network nicely preserve
the input shape, including even small details such as hats (first
column) and shoes (third column). Figure 7 (c) demonstrates the
advantages offered by learning shape representations over using
explicit shape cues. Comparing the reconstruction results between
ours and [11], our images exhibits much more details and are hardly
distinguishable to the original ones. Because our learned shape
masks conforms to the input human contour, details like the gaps
between arms and torso are well preserved.

4.4 Compare with Current State-Of-The-Art
To the best of our knowledge, our proposed method is the first unsu-
pervised end-to-end framework that achieves automatic disentan-
glement and image generation without heavy pre/post-processing.
We compare with three methods that are closest to ours: Body-
RoI [33], UPIS [41] and V-Unet [11], where they also achieve un-
paired image translation, but weak supervision (joint coordinates)
are provided. To put the performance of our method into context,
we also compare with supervised (paired) image translation meth-
ods, specifically PG2 [32], DeformableGan [44] and SGWG [10]. As
a general baseline, we also compare with pix2pix [22]. Experimen-
tal results shows that we compare favourably against all current
state-of-the-arts, even supervised ones.



Figure 3: Appearance and shape transfer results on DeepFashion (up) and market1501 (bottom). The input images are all
randomly chosen. Images of upper/whole body, side/front/back views, are shown here to demonstrate the robustness of our
method. In each block, the appearance is inferred from the upper-left image, while shape is inferred from the upper-right
one.

Figure 4: Visual comparisonwith current state-of-the-arts onDeepFashion.We can see that our unsupervisedmethod achieves
better visual results compared to existing weakly-supervised methods. For fair comparison, our results are generated using
gray-scale images as shape source. Red boxes points put areas of significant improvements of our methods.

Visual comparisons are shown in Figure 4 and Figure 5 for Deep-
Fashion and Market1501 respectively. We can see that we generate
the most visual pleasing and realistic results with well-preserved
details. We also conduct quantitative comparisons evaluated with
SSIM score. Results on both datasets are reported in Table 1, sug-
gesting superior performance of our methods.

4.5 Ablation Study
We argue that the twomost important contributing factors to our su-
perior performance is a learned more plausible shape representation
and clean disentangled features encouraged by feature adversarial
and color consistency loss. We conduct an ablation study to verify



Figure 5: Visual comparison with current state-of-the-arts
on Market1501.

Figure 6: Demonstration of model stability. Upper: same ap-
pearance paired with different shape; Lower: same shape
with different appearance. We can see the desired image at-
tributes are well-preserved and consistent in both cases.

DeepFashion Market1501
Methods SSIM IS SSIM IS
pix2pix[22] 0.692 3.249 0.183 2.678
PG2[32] 0.762 3.090 0.253 3.460
DSCF[44] 0.761 3.351 0.290 3.185
SGWG[10] 0.793 3.314 0.356 3.409
UPIS[41] 0.747 2.97 - -
BodyROI7[33] 0.614 3.228 0.099 3.483
VUnet[11] 0.786 3.087 0.353 3.214
Ours 0.844 3.196 0.626 3.281

Table 1: Quantitative Comparison using SSIM and IS score.
Following [11] and [10], the SSIM score is calculated using re-
constructed images in the test set. The first block are super-
vised methods using paired data; middle block are weakly-
supervisedmethods requiring explicit shape inputs. Our un-
supervisedmethod achieve comparable scores against super-
vised or weakly-supervised methods

their claimed effects. Figure 8 shows results using three model vari-
ations. In the above figure, base model is the bare-bone network
using fixed shape encoder trained with perceptual reconstruction

Figure 7: Visualization of the learned shape masks and its
effect. (a) visualize the learned shape masks by decoding 𝒛𝑠,𝑖
with all-zero appearance features. (b) demonstrates the ad-
vantages of our learned masks over fixed stickman inputs
employed in [11]. Notice how results from VUnet are unnat-
ural because the input stickman enforce too much human
bias onto their network.

Figure 8: Ablation study results comparing the performance
of base model (B), base model with feature disentanglement
(B+D), and our full model using both disentanglement and
shape mask refinement (B+D+R).

loss only. The results indicates that, without feature disentangle-
ment, the appearance contain much information about its original
shape, yielding significant visual artifacts and incoherent human
images. After adding the feature adversarial loss and color con-
sistency loss to encourage disentanglement, results are noticeably
better with different appearance patterns in the correct places. The
performance are further improved by employing adaptive shape
refinement in our full model. Refined shape offer much more details,
such as body curvature, hair styles etc.



5 CONCLUSION
In conclusion, We have developed an unsupervised framework that
learns to extract latent representations of appearance and shape,
as well as to generate novel images from unpaired data. Compared
to existing methods using fixed shape cues, our learned shape
representation encodes finer details, yielding more realistic images.
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